X-raying winds in distant quasars: The first high-redshift wind duty cycle

Author:

Bertola E.ORCID,Dadina M.ORCID,Cappi M.ORCID,Vignali C.,Chartas G.ORCID,De Marco B.ORCID,Lanzuisi G.,Giustini M.ORCID,Torresi E.ORCID

Abstract

Aims. Theoretical models of wind-driven feedback from active galactic nuclei (AGN) often identify ultra-fast outflows as being the main agent in the generation of galaxy-sized outflows, which are possibly the main actors in establishing so-called AGN-galaxy co-evolution. Ultra-fast outflows are well characterized in local AGN but much less is known in quasars at the cosmic time when star formation and AGN activity peaked (z ≃ 1–3). It is therefore necessary to search for evidence of ultra-fast outflows in high-z sources to test wind-driven AGN feedback models. Methods. Here we present a study of Q2237+030, the Einstein Cross, a quadruply-imaged radio-quiet lensed quasar located at z = 1.695. We performed a systematic and comprehensive temporally and spatially resolved X-ray spectral analysis of all the available Chandra and XMM-Newton data (as of September 2019). Results. We find clear evidence for spectral variability, possibly due to absorption column density (or covering fraction) variability intrinsic to the source. For the first time in this quasar, we detect a fast X-ray wind outflowing at vout ≃ 0.1c that would be powerful enough (Ėkin ≃ 0.1 Lbol) to significantly affect the evolution of the host galaxy. We report also on the possible presence of an even faster component of the wind (vout ∼ 0.5c). For the first time in a high-z quasar, given the large sample and long time interval spanned by the analyzed X-ray data, we are able to roughly estimate the wind duty cycle as ≃0.46 (0.31) at 90% (95%) confidence level. Finally, we also confirm the presence of a Fe Kα emission line with variable energy, which we discuss in the light of microlensing effects as well as considering our findings on the source.

Funder

Agenzia Spaziale Italiana - Istituto Nazionale di Astrofisica

Horizon 2020

Comunidad de Madrid

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3