Do stellar-mass and super-massive black holes have similar dining habits?

Author:

Arcodia R.,Ponti G.,Merloni A.,Nandra K.

Abstract

Over the years, numerous attempts have been made to connect the phenomenology and physics of mass accretion onto stellar-mass and super-massive black holes in a scale-invariant fashion. In this paper, we explore this connection at the radiatively efficient (and non-jetted) end of accretion modes by comparing the relationship between the luminosity of the accretion disc and corona in the two source classes. Motivated by the apparently tight relationship between these two quantities in active galactic nuclei (AGNs), we analyse 458 RXTE-PCA archival observations of the X-ray binary (XRB) GX 339–4, using this object as an exemplar for the properties of XRBs in general. We focus on the soft and soft-intermediate states, which have been suggested to be analogous to radiatively efficient AGNs. The observed scatter in the logLdisc − logLcoronarelationship of GX 339–4 is high (∼0.43 dex) and significantly larger than in a representative sample of radiatively efficient, non- or weakly jetted AGNs (∼0.30 dex). At first glance, this would appear contrary to the hypothesis that the systems simply scale with mass. On the other hand, we also find that GX 339–4 and our AGN sample show different accretion rate and power-law index distributions, with the latter in particular being broader in GX 339–4 (dispersion of ∼0.16 cf. ∼0.08 for AGN). GX 339–4 also shows an overall softer slope, with a mean value of ∼2.20 as opposed to ∼2.07 for the AGN sample. Remarkably, once similarly broad Γ anddistributions are selected, the AGN sample overlaps nicely with GX 339–4 observations in the mass-normalised logLdisc − logLcoronaplane, with a scatter of ∼0.30 − 0.33 dex in both cases. This indicates that a mass-scaling of properties might hold after all, with our results being consistent with the disc-corona systems in AGNs and XRBs exhibiting the same physical processes, albeit under different conditions for instance in terms of temperature, optical depth and/or electron energy distribution in the corona, heating-cooling balance, coronal geometry and/or black hole spin.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3