Molecular mapping of the PDS70 system

Author:

Cugno G.,Patapis P.,Stolker T.,Quanz S. P.,Boehle A.,Hoeijmakers H. J.,Marleau G.-D.,Mollière P.,Nasedkin E.,Snellen I. A. G.

Abstract

Context. Determining the chemical properties of the atmosphere of young forming gas giants might shed light on the location their formation occurred and the mechanisms involved. Aims. Our aim was to detect molecules in the atmosphere of the young forming companion PDS70 b by searching for atmospheric absorption features typical of substellar objects. Methods. We obtained medium-resolution (R ≈ 5075) spectra of the PDS70 planetary system with the SINFONI integral field spectrograph at the Very Large Telescope. We applied molecular mapping, based on cross-correlation with synthetic spectra, to identify signatures of molecular species in the atmosphere of the planet. Results. Although the planet emission is clearly detected when resampling the data to lower resolution, no molecular species could be identified with the cross-correlation technique. We estimated upper limits on the abundances of H2O, CO, and CH4 (log(Xmol) < −4.0, − 4.1, and − 4.9, respectively) assuming a clear atmosphere, and we explored the impact of clouds, which increase the upper limits by a factor of up to 0.7 dex. Assuming that the observations directly probe the planet’s atmosphere, we found a lack of molecular species compared to other directly imaged companions or field objects. Under the assumption that the planet atmosphere presents similar characteristics to other directly imaged planets, we conclude that a dusty environment surrounds the planet, effectively obscuring any feature generated in its atmosphere. We quantify the extinction necessary to impede the detection (AV ≈ 16−17 mag), pointing to the possibility of higher optical thickness than previously estimated from other studies. Finally, the non-detection of molecular species conflicts with atmospheric models previously proposed to describe the forming planet. Conclusions. To reveal how giant planets form a comprehensive approach that includes constraints from multiple techniques needs to be undertaken. Molecular mapping emerges as an alternative to more classical techniques like SED fitting. Specifically tuned atmospheric models are likely required to faithfully describe the atmospheres of forming protoplanets, and higher spectral resolution data may reveal molecular absorption lines despite the dusty environment enshrouding PDS70 b.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3