Cosmography by orthogonalized logarithmic polynomials

Author:

Bargiacchi G.ORCID,Risaliti G.,Benetti M.,Capozziello S.,Lusso E.,Saccardi A.,Signorini M.

Abstract

Cosmography is a powerful tool for investigating the Universe kinematic and then for reconstructing the dynamics in a model-independent way. However, recent new measurements of supernovae Ia and quasars have populated the Hubble diagram up to high redshifts (z ∼ 7.5) and the application of the traditional cosmographic approach has become less straightforward due to the large redshifts implied. Here we investigate this issue through an expansion of the luminosity distance–redshift relation in terms of orthogonal logarithmic polynomials. In particular, we point out the advantages of a new procedure called orthogonalization, and we show that such an expansion provides a very good fit in the whole z = 0 ÷ 7.5 range to both real and mock data obtained assuming various cosmological models. Moreover, although the cosmographic series is tested well beyond its convergence radius, the parameters obtained expanding the luminosity distance–redshift relation for the Lambda cold dark matter (ΛCDM) model are broadly consistent with the results from a fit of mock data obtained with the same cosmological model. This provides a method for testing the reliability of a cosmographic function to study cosmological models at high redshifts, and it demonstrates that the logarithmic polynomial series can be used to test the consistency of the ΛCDM model with the current Hubble diagram of quasars and supernovae Ia. We confirm a strong tension (at > 4σ) between the concordance cosmological model and the Hubble diagram at z > 1.5. This tension is dominated by the contribution of quasars at z > 2 and also starts to be present in the few supernovae Ia observed at z > 1.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quasars as standard candles;Astronomy & Astrophysics;2024-09

2. Ripped ΛCDM: An observational contender to the consensus cosmological model;Physics of the Dark Universe;2024-07

3. Quasars as standard candles;Astronomy & Astrophysics;2024-06-25

4. Beyond ΛCDM with f(z)CDM: Criticalities and solutions of Padé Cosmography;Physics of the Dark Universe;2024-05

5. A new binning method to choose a standard set of Quasars;Physics of the Dark Universe;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3