ALMA Lensing Cluster Survey: A spectral stacking analysis of [C II] in lensed z ∼ 6 galaxies

Author:

Jolly Jean-BaptisteORCID,Knudsen KirstenORCID,Laporte NicolasORCID,Richard JohanORCID,Fujimoto Seiji,Kohno KotaroORCID,Ao YipingORCID,Bauer Franz E.ORCID,Egami Eiichi,Espada DanielORCID,Dessauges-Zavadsky MiroslavaORCID,Magdis GeorgiosORCID,Schaerer DanielORCID,Sun FengwuORCID,Valentino FrancescoORCID,Wang Wei-Hao,Zitrin AdiORCID

Abstract

Context. The properties of galaxies at redshift z > 6 hold the key to our understanding of the early stages of galaxy evolution and can potentially identify the sources of the ultraviolet radiation that give rise to the epoch of reionisation. The far-infrared cooling line of [C II] at 158 μm is known to be bright and correlate with the star formation rate (SFR) of low-redshift galaxies, and hence is also suggested to be an important tracer of star formation and interstellar medium properties for very high-redshift galaxies. Aims. With the aim to study the interstellar medium properties of gravitationally lensed galaxies at z > 6, we search for [C II] and thermal dust emission in a sample of 52 z ∼ 6 galaxies observed by the ALMA Lensing Cluster Survey. Methods. We perform our analysis using LINESTACKER, stacking both [C II] and continuum emission. The target sample is selected from multiple catalogues, and the sample galaxies have spectroscopic redshift or low-uncertainty photometric redshifts (σz < 0.02) in nine galaxy clusters. Source properties of the target galaxies are either extracted from the literature or computed using spectral energy distribution fitting. Both weighted-average and median stacking are used, on both the full sample and three sub-samples. Results. Our analyses find no detection of either [C II] or continuum. An upper limit on L[CII] is derived, implying that [C II] remains marginally consistent for low-SFR z > 6 galaxies but likely is under-luminous compared to the local L[CII]-SFR relationship. We discuss potential biases and possible physical effects that may be the cause of the non-detection. Further, the upper limit on the dust continuum implies that less than half of the star formation is obscured.

Funder

Swedish Research Council

Knut and Alice Wallenberg Foundation

JSPS KAKENHI

NAOJ ALMA Scientific Research

ANID grants CATA-Basal

FONDECYT Regular

Millennium Science Initiative

Beatriz Galindo senior fellowship from the Ministry of Science and Innovation

Villum Fonden research grant “Gas to stars, stars to dust: tracing star formation across cosmic time”

Cosmic Dawn Center of Excellence funded by the Danish National Research Foundation

Carlsberg Foundation Research Grant “Galaxies: Rise and Death”

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3