Magnetic helicity and energy budget around large confined and eruptive solar flares

Author:

Gupta M.ORCID,Thalmann J. K.,Veronig A. M.

Abstract

Context. In order to better understand the underlying processes and prerequisites for solar activity, it is essential to study the time evolution of the coronal magnetic field of solar active regions (ARs) associated with flare activity. Aims. We investigate the coronal magnetic energy and helicity budgets of ten solar ARs around the times of large flares. In particular, we are interested in a possible relation of the derived quantities to the particular type of the flares that the AR produces, namely, whether they are associated with a CME or whether they are confined (i.e., not accompanied by a CME). Methods. Using an optimization approach, we employed time series of 3D nonlinear force-free magnetic field models of ten ARs, covering a time span of several hours around the time of occurrence of large solar flares (GOES class M1.0 and larger). We subsequently computed the 3D magnetic vector potentials associated to the model 3D coronal magnetic field using a finite-volume method. This allows us to correspondingly compute the coronal magnetic energy and helicity budgets, as well as related (intensive) quantities such as the relative contribution of free magnetic energy, EF/E (energy ratio), the fraction of non-potential (current-carrying) helicity, |HJ|/|HV| (helicity ratio), and the normalized current-carrying helicity, |HJ|/ϕ2. Results. The total energy and helicity budgets of flare-productive ARs (extensive parameters) cover a broad range of magnitudes, with no obvious relation to the eruptive potential of the individual ARs, that is, whether or not a CME is produced in association with the flare. The intensive eruptivity proxies, EF/E and |HJ|/|HV|, and |HJ|/ϕ2, however, seem to be distinctly different for ARs that produce CME-associated large flares compared to those which produce confined flares. For the majority of ARs in our sample, we are able to identify characteristic pre-flare magnitudes of the intensive quantities that are clearly associated with subsequent CME-productivity. Conclusions. If the corona of an AR exhibits characteristic values of ⟨|HJ|/|HV|⟩ > 0.1, ⟨EF/E⟩ > 0.2, and ⟨|HJ|/ϕ2⟩ > 0.005, then the AR is likely to produce large CME-associated flares. Conversely, confined large flares tend to originate from ARs that exhibit coronal values of ⟨|HJ|/|HV|⟩ ≲ 0.1, ⟨EF/E⟩ ≲ 0.1, and ⟨|HJ|/ϕ2⟩ ≲ 0.002.

Funder

Austrian Science Fund

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3