Signatures of UV radiation in low-mass protostars

Author:

Mirocha AgnieszkaORCID,Karska AgataORCID,Gronowski MarcinORCID,Kristensen Lars E.,Tychoniec ŁukaszORCID,Harsono DanielORCID,Figueira Miguel,Gładkowski MarcinORCID,Żółtowski Michał

Abstract

Context. Ultraviolet radiation (UV) influences the physics and chemistry of star-forming regions, but its properties and significance in the immediate surroundings of low-mass protostars are still poorly understood. Aims. Our aim is to extend the use of the CN/HCN ratio, already established for high-mass protostars, to the low-mass regime to trace and characterize the UV field around low-mass protostars on ~0.6 × 0.6 pc scales. Methods. We present 5′ × 5′ maps of the Serpens Main Cloud encompassing ten protostars observed with the EMIR receiver at the IRAM 30 m telescope in CN 1–0, HCN 1–0, CS 3–2, and some of their isotopologs. The radiative-transfer code RADEX and the chemical model Nahoon were used to determine column densities of molecules, gas temperature and density, and the UV field strength, G0. Results. The spatial distribution of HCN and CS are closely correlated with CO 6–5 emission, that traces outflows. The CN emission is extended from the central protostars to their immediate surroundings also tracing outflows, likely as a product of HCN photodissociation. The ratio of CN to HCN total column densities ranges from ~1 to 12 corresponding to G0 ≈ 101–103 for gas densities and temperatures typical for outflows of low-mass protostars. Conclusions. UV radiation associated with protostars and their outflows is indirectly identified in a significant part of the Serpens Main low-mass star-forming region. Its strength is consistent with the values obtained from the OH and H2O ratios observed with Herschel and compared with models of UV-illuminated shocks. From a chemical viewpoint, the CN to HCN ratio is an excellent tracer of UV fields around low- and intermediate-mass star-forming regions.

Funder

Polish National Science Center

Foundation for Polish Science

Polish National Agency for Academic Exchange

European Research Council

VILLUM Fonden

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3