The extension of the fundamental metallicity relation beyond the BPT star-forming sequence: Evidence for both gas accretion and starvation

Author:

Kumari NimishaORCID,Maiolino Roberto,Trussler James,Mannucci Filippo,Cresci Giovanni,Curti Mirko,Marconi Alessandro,Belfiore Francesco

Abstract

Context. The fundamental metallicity relation (FMR) of galaxies is a 3D relation between the gas-phase metallicity, stellar mass, and star-formation rate (SFR). So far, it has only been studied for galaxies identified as star forming (SF) on the BPT diagrams (BPT-SF), but not for galaxies with LI(N)ER/AGN classification (BPT-non-SF), mainly because of the lack of diagnostics for estimating their gas-phase metallicities in the latter cases. Aims. We extend the FMR to BPT-non-SF galaxies. Methods. To this end, we exploit the recent nebular line empirical calibrations derived specifically for galaxies classified as non-SF in the BPT diagrams. Moreover, we study an alternative representation of the FMR where we consider the offsets in metallicity and SFR with respect to main sequence (MS) galaxies. Results. We find that galaxies with SFR higher than the MS are more metal-poor than their counterparts on the MS, which is interpreted in terms of gas accretion boosting star formation and diluting the metallicity. Low-mass galaxies below the MS (i.e. towards quiescence) have higher metallicities than their MS counterparts, which is interpreted in terms of starvation (i.e. suppression of fresh gas supply) hampering star formation and reducing the dilution effect, hence resulting in a higher level of internal chemical enrichment. Massive galaxies below the MS have a gas metallicity that is much closer to their MS counterparts and much lower than expected from their stellar metallicities; this result suggests a scenario where massive nearly quiescent galaxies with LI(N)ER-like nebular emission have recently accreted gas from the circum/intergalactic medium.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3