Characterizing the astrometric instability of extragalactic radio source positions measured with geodetic VLBI

Author:

Gattano C.ORCID,Charlot P.ORCID

Abstract

Context. Geodetic very long baseline interferometry (VLBI) has been used to observe extragalactic radio sources for more than 40 yr. The absolute source positions derived from the VLBI measurements serve as a basis to define the International Celestial Reference Frame (ICRF). Despite being located at cosmological distances, an increasing number of these sources are found to show position instabilities, as revealed by the accumulation of VLBI data over the years. Aims. We investigate how to characterize the astrometric source position variations, as measured with geodetic VLBI data, in order to determine whether these variations occur along random or preferential directions. The sample of sources used for this purpose is made up of the 215 most observed ICRF sources. Methods. Based on the geodetic VLBI data set, we derived source coordinate time series to map the apparent trajectory drawn by the successively measured positions of each source in the plane of the sky. We then converted the coordinate time series into a set of vectors and used the direction of these vectors to calculate a probability density function (PDF) for the direction of variation of the source position. For each source, a model that matches the PDF and that comprises the smallest number of Gaussian components possible was further adjusted. The resulting components then identify the preferred directions of variation for the source position. Results. We found that more than one-half of the sources (56%) in our sample may be characterized by at least one preferred direction. Among these, about three-quarters are characterized by a unique direction, while the remaining sources show multiple preferred directions. The analysis of the distribution of these directions reveals an excess along the declination axis that is attributed to a VLBI network effect. Whether single or multiple, the identified preferred directions are likely due to source-intrinsic physical phenomena.

Funder

CNES

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3