Asteroseismic analysis of variable hot subdwarf stars observed with TESS

Author:

Uzundag MuratORCID,Vučković Maja,Németh Péter,Miller Bertolami M.,Silvotti Roberto,Baran Andrzej S.,Telting John H.,Reed Mike,Shoaf K. A.,Østensen Roy H.,Sahoo Sumanta K.

Abstract

Context. We present photometric and spectroscopic analyses of gravity (g-mode) long-period pulsating hot subdwarf B (sdB) stars, also called V1093 Her stars, observed by the TESS space telescope in both 120 s short-cadence and 20 s ultra-short-cadence mode during the survey observation and the extended mission of the southern ecliptic hemisphere. Aims. We performed a detailed asteroseismic and spectroscopic analysis of five pulsating sdB stars observed with TESS in order to compare the observations with model predictions based on our stellar evolution computations coupled with adiabatic pulsation computations. Methods. We processed and analyzed TESS observations of long-period pulsating hot subdwarf B stars. We used standard pre-whitening techniques on the datasets to extract the pulsation periods from the TESS light curves. We applied standard seismic tools for mode identification, including asymptotic period spacings and rotational frequency multiplets. Based on the values obtained from Kolmogorov-Smirnov and Inverse Variance tests, we searched for a constant period spacing for dipole (l = 1) and quadrupole (l = 2) modes. We calculated the mean period spacing for l = 1 and l = 2 modes and estimated the errors by means of a statistical resampling analysis. For all stars, atmospheric parameters were derived by fitting synthetic spectra to the newly obtained low-resolution spectra. We computed stellar evolution models using the LPCODE stellar evolution code, and computed l = 1 g-mode frequencies with the adiabatic nonradial pulsation code LP-PUL. Derived observational mean period spacings were then compared to the mean period spacings from detailed stellar evolution computations coupled with the adiabatic pulsation computations of g-modes. Results. We detect 73 frequencies, most of which are identified as dipole and quadrupole g-modes with periods spanning from ∼3000 s to ∼14 500 s. The derived mean period spacing of dipole modes is concentrated in a narrow region ranging from 251 s to 256 s, while the mean period spacing for quadrupole modes spans from 145 s to 154 s. The atmospheric parameters derived from spectroscopic data are typical of long-period pulsating sdB stars with an effective temperature ranging from 23 700 K to 27 600 K and surface gravity spanning from 5.3 dex to 5.5 dex. In agreement with the expectations from theoretical arguments and previous asteroseismological works, we find that the mean period spacings obtained for models with small convective cores, as predicted by a pure Schwarzschild criterion, are incompatible with the observations. We find that models with a standard, modest convective boundary mixing at the boundary of the convective core are in better agreement with the observed mean period spacings and are therefore more realistic. Conclusions. Using high-quality space-based photometry collected by the TESS mission coupled with low-resolution spectroscopy from the ground, we provide a global comparison of the observations with model predictions by means of a robust indicator such as the mean period spacing. All five objects that we analyze in this work show remarkable homogeneity in both seismic and spectroscopic properties.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The impact of asteroseismically calibrated internal mixing on nucleosynthetic wind yields of massive stars;Astronomy & Astrophysics;2024-09

2. MK-like spectral classification for hot subdwarf stars with LAMOST spectra;Publications of the Astronomical Society of Japan;2024-08-14

3. A comprehensive search for hot subdwarf stars using Gaia and TESS;Astronomy & Astrophysics;2024-04

4. 3D hydrodynamics simulations of a 3 M⊙ core helium burning star;Monthly Notices of the Royal Astronomical Society;2023-11-15

5. Asteroseismological analysis of the polluted ZZ Ceti star G 29 − 38 with TESS;Monthly Notices of the Royal Astronomical Society;2023-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3