Radio properties of the optically identified supernova remnant G107.0+9.0

Author:

Reich Wolfgang,Gao Xuyang,Reich Patricia

Abstract

Context. The vast majority of Galactic supernova remnants (SNRs) were detected by their synchrotron radio emission. Recently, the evolved SNR G107.0+9.0 with a diameter of about 3° or 75 pc up to 100 pc in size was optically detected with an indication of faint associated radio emission. This SNR requires a detailed radio study. Aims. We aim to search for radio emission from SNR G107.0+9.0 by analysing new data from the Effelsberg 100-m and the Urumqi 25-m radio telescopes in addition to available radio surveys. Methods. Radio SNRs outside of the Galactic plane, where confusion is rare, must be very faint if they have not been identified so far. Guided by the Hα emission of G107.0+9.0, we separated its radio emission from the Galactic large-scale emission. Results. Radio emission from SNR G107.0+9.0 is detected between 22 MHz and 4.8 GHz with a steep non-thermal spectrum, which confirms G107.0+9.0 as an SNR. Its surface brightness is among the lowest known for Galactic SNRs. Polarised emission is clearly detected at 1.4 GHz but is fainter at 4.8 GHz. We interpret the polarised emission as being caused by a Faraday screen associated with G107.0+9.0 and its surroundings. Its ordered magnetic field along the line of sight is below 1 μG. At 4.8 GHz, we identified a depolarised filament along the western periphery of G107.0+9.0 with a magnetic field strength along the line of sight B||~ 15 μG, which requires magnetic field compression. Conclusions. G107.0+9.0 adds to the currently small number of known, evolved, large-diameter, low-surface-brightness Galactic SNRs. We have shown that such objects can be successfully extracted from radio-continuum surveys despite the dominating large-scale diffuse Galactic emission.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3