Solar cyclic activity over the last millennium reconstructed from annual 14C data

Author:

Usoskin I. G.,Solanki S. K.,Krivova N. A.,Hofer B.,Kovaltsov G. A.,Wacker L.,Brehm N.,Kromer B.

Abstract

Aims. The 11-year solar cycle (Schwabe cycle) is the dominant pattern of solar magnetic activity reflecting the oscillatory dynamo mechanism in the Sun’s convection zone. Solar cycles have been directly observed since 1700, while indirect proxy data suggest their existence over a much longer period of time, but generally without resolving individual cycles and their continuity. Here we reconstruct individual solar cycles for the last millennium using recently obtained 14C data and state-of-the-art models. Methods. Starting with the 14C production rate determined from the so far most precise measurements of radiocarbon content in tree rings, solar activity was reconstructed in the following three physics-based steps: (1) correction of the 14C production rate for the changing geomagnetic field; (2) computation of the open solar magnetic flux; and (3) conversion into sunspot numbers outside of grand minima. All known uncertainties, including both measurement and model uncertainties, were straightforwardly accounted for by a Monte-Carlo method. Results. Cyclic solar activity is reconstructed for the period 971–1900 (85 individual cycles) along with its uncertainties. This more than doubles the number of solar cycles known from direct solar observations. We found that the lengths and strengths of well-defined cycles outside grand minima are consistent with those obtained from the direct sunspot observations after 1750. The validity of the Waldmeier rule (cycles with fast-rising phase tend to be stronger) is confirmed at a highly significant level. Solar activity is found to be in a deep grand minimum when the activity is mostly below the sunspot formation threshold for about 250 years. Therefore, although considerable cyclic variability in 14C is seen even during grand minima, individual solar cycles can hardly be reliably resolved therein. Three potential solar particle events, ca. 994, 1052, and 1279 AD, are shown to occur around the maximum phases of solar cycles. Conclusions. A new approximately 1000-year-long solar activity reconstruction, in the form of annual (pseudo) sunspot numbers with the full assessment of all known uncertainties, is presented based on new high-precision Δ14C measurements and state-of-the-art models, more than doubling the number of individually resolved solar cycles. This forms a solid basis for new, more detailed studies of solar variability.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3