Infrared-radio relation in the local Universe

Author:

Tisanić K.ORCID,De Zotti G.ORCID,Amiri A.ORCID,Khoram A.,Tavasoli S.ORCID,Vidović-Tisanić Z.

Abstract

Context. The Square Kilometer Array (SKA) is expected to detect high-redshift galaxies with star formation rates (SFRs) up to two orders of magnitude lower than Herschel surveys and will thus boost the ability of radio astronomy to study extragalactic sources. The tight infrared-radio correlation offers the possibility of using radio emission as a dust-unobscured star formation diagnostic. However, the physics governing the link between radio emission and star formation is poorly understood, and recent studies have pointed to differences in the exact calibration required when radio is to be used as a star formation tracer. Aims. We improve the calibration of the relation of the local radio luminosity–SFR and to test whether there are nonlinearities in it. Methods. We used a sample of Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) sources and investigated their radio luminosity, which was derived using the NRAO VLA Sky Survey (NVSS) and Faint Images of the Radio Sky at Twenty-cm (FIRST) maps. We stacked the bins of infrared luminosity and SFR and accounted for bins with no detections in the stacked images using survival analysis fitting. This approach was tested using Monte Carlo simulations. Results. After removing sources from the sample that have excess radio emission, which is indicative of nuclear radio activity, we found no deviations from linearity of the mean relations between radio luminosity and either SFR or infrared luminosity. Concluisions. We analyzed the link between radio emission and SFR or infrared luminosity using a local sample of star-forming galaxies without evidence of nuclear radio activity and found no deviations from linearity, although our data are also consistent with the small nonlinearity reported by some recent analyses. The normalizations of these relations are intermediate between those reported by earlier works.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3