Discovery of a recurrent spectral evolutionary cycle in the ultra-luminous X-ray sources Holmberg II X–1 and NGC 5204 X–1

Author:

Gúrpide A.ORCID,Godet O.,Vasilopoulos G.,Webb N. A.,Olive J.-F.

Abstract

Context. Most ultra-luminous X-ray sources (ULXs) are now thought to be powered by stellar-mass compact objects accreting at super-Eddington rates. While the discovery of evolutionary cycles have marked a breakthrough in our understanding of the accretion flow changes in the sub-Eddington regime in Galactic black hole binaries, their evidence in the super-Eddington regime has so far remained elusive. However, recent circumstantial evidence hinted at the presence of a recurrent evolutionary cycle in two archetypal ULXs: Holmberg II X–1 and NGC 5204 X–1. Aims. We aim to build on our previous work and exploit the long-term high-cadence monitoring of Swift-XRT in order to provide robust evidence of the evolutionary cycle in these two sources and investigate the main physical parameters inducing their spectral transitions. Methods. We studied the long-term evolution of both sources using hardness-intensity diagrams (HID) and by means of Lomb–Scargle periodograms and Gaussian process modelling to look for periodic variability. We also applied a physically motivated model to the combined Chandra, XMM-Newton, NuSTAR, and Swift-XRT data of each of the source spectral states. Results. We robustly show that both sources follow a clear and recurrent evolutionary pattern in the HID that can be characterised by the hard ultra-luminous (HUL) and soft ultra-luminous (SUL) spectral regimes, and a third state with characteristics similar to the super-soft ultra-luminous (SSUL) state. The transitions between the soft states seem consistent with aperiodic variability, as revealed by a timing analysis of the light curve of Holmberg II X–1; albeit, further investigation is warranted. The light curve of NGC 5204 X–1 shows a stable periodicity on a longer baseline of ∼200 days, possibly associated with the duration of the evolutionary cycle. Conclusions. The similarities between both sources provide strong evidence of both systems hosting the same type of accretor and/or accretion flow geometry. We support a scenario in which the spectral changes from HUL to SUL are due to a periodic increase of the mass-transfer rate and subsequent narrowing of the opening angle of the super-critical funnel. The narrower funnel, combined with stochastic variability imprinted by the wind, might explain the rapid and aperiodic variability responsible for the SUL–SSUL spectral changes. The nature of the longer periodicity of NGC 5204 X–1 remains unclear, and robust determination of the orbital period of these sources could shed light on the nature of the periodic modulation found. Based on the similarities between the two sources, a long periodicity should be detectable in Holmberg II X–1 with future monitoring.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3