Non-local thermodynamic equilibrium effects determine the upper atmospheric temperature structure of the ultra-hot Jupiter KELT-9b

Author:

Fossati L.ORCID,Young M. E.,Shulyak D.,Koskinen T.,Huang C.,Cubillos P. E.,France K.,Sreejith A. G.

Abstract

Context. Several observational and theoretical results indicate that the atmospheric temperature of the ultra-hot Jupiter KELT-9b in the main line formation region is a few thousand degrees higher than predicted by self-consistent models. Aims. Our aim was to test whether non-local thermodynamic equilibrium (NLTE) effects are responsible for the presumably higher temperature. Methods. We employed the Cloudy NLTE radiative transfer code to self-consistently compute the upper atmospheric temperature-pressure (TP) profile of KELT-9b, assuming solar metallicity and accounting for Roche potential. In the lower atmosphere, we used an updated version of the HELIOS radiative-convective equilibrium code to constrain the Cloudy model. Results. The Cloudy NLTE TP profile is ≈2000 K hotter than that obtained with previous models assuming LTE. In particular, in the 1–10−7 bar range the temperature increases from ≈4000 to ≈8500 K, remaining roughly constant at lower pressures. We find that the high temperature in the upper atmosphere of KELT-9b is driven principally by NLTE effects modifying the Fe and Mg level populations, which strongly influence the atmospheric thermal balance. We employed Cloudy to compute LTE and NLTE synthetic transmission spectra on the basis of the TP profiles computed in LTE and NLTE, respectively, finding that the NLTE model generally produces stronger absorption lines, particularly in the ultraviolet, than the LTE model (up to 30%). We compared the NLTE synthetic transmission spectrum with the observed Hα and Hβ line profiles obtaining an excellent match, thus supporting our results. Conclusions. The NLTE synthetic transmission spectrum can be used to guide future observations aiming at detecting features in the KELT-9b transmission spectrum. Metals, such as Mg and Fe, and NLTE effects shape the upper atmospheric temperature structure of KELT-9b, and thus affect the mass-loss rates derived from it. Finally, our results call for checking whether this is the case also for cooler planets.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3