Radiative Rayleigh-Taylor instability and the structure of clouds in planetary atmospheres

Author:

Tremblin P.ORCID,Bloch H.,González M.,Audit E.,Fromang S.,Padioleau T.,Kestener P.,Kokh S.

Abstract

Aims. Clouds are expected to form in a broad range of conditions in the atmosphere of exoplanets given the variety of possible condensible species. This diversity, however, might lead to very different small-scale dynamics depending on radiative transfer in various thermal conditions. Here, we aim to provide some insight into these dynamical regimes. Methods. We performed an analytical linear stability analysis of a compositional discontinuity with a heating source term that depends on a given composition. We also performed idealized two-dimensional simulations of an opacity discontinuity in a stratified medium, using the ARK code. We used a two-stream gray model for radiative transfer and explored the brown-dwarf and Earth-like regimes. Results. We revealed the existence of a radiative Rayleigh-Taylor instability (RRTI, hereafter, which is a particular case of diabatic Rayleigh-Taylor instability) when an opacity discontinuity is present in a stratified medium. This instability is similar in nature to diabatic convection and relies only on buoyancy with radiative transfer heating and cooling. When the temperature is decreasing with height in the atmosphere, a lower-opacity medium on top of a higher-opacity medium is shown to be dynamically unstable, whereas a higher-opacity medium on top of a lower-opacity medium is stable. This stability-instability behavior is reversed if the temperature is increasing with height. Conclusions. The existence of a RRTI could have important implications for the stability of the cloud cover with regard to a wide range of planetary atmospheres. In our Solar System, it could help explain the formation of mammatus cloud in Earth atmospheres and the existence of the Venus cloud deck. Likewise, it suggests that stable and large-scale cloud covers could be ubiquitous in strongly irradiated exoplanets, but might be more patchy in low-irradiated or isolated objects such as brown dwarfs and directly imaged exoplanets.

Funder

ERC

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3