The ρ Ophiuchi region revisited with Gaia EDR3

Author:

Grasser Natalie,Ratzenböck Sebastian,Alves João,Großschedl Josefa,Meingast Stefan,Zucker Catherine,Hacar Alvaro,Lada Charles,Goodman Alyssa,Lombardi Marco,Forbes John C.,Bomze Immanuel M.,Möller Torsten

Abstract

Context. Young and embedded stellar populations are important probes of the star formation process. Their properties and the environments they create have the potential to affect the formation of new planets. Paradoxically, we have a better census of nearby embedded young populations than of the slightly more evolved optically visible young populations. The high accuracy measurements and all-sky coverage of Gaia data are about to change this situation. Aims. This work aims to construct the most complete sample to date of young stellar objects (YSOs) in the ρ Oph region. Methods. We compile a catalog of 1114 Ophiuchus YSOs from the literature and cross-match it with the Gaia EDR3, Gaia-ESO, and APOGEE-2 surveys. We apply a multivariate classification algorithm to this catalog to identify new, co-moving population candidates. Results. We find 191 new high-fidelity YSO candidates in the Gaia EDR3 catalog belonging to the ρ Oph region. The new sources appear to be mainly Class III M stars and substellar objects and are less extincted than the known members, while we find that 28 of the previously unknown sources are YSOs with circumstellar disks (Class I or Class II). The analysis of the proper motion distribution of the entire sample reveals a well-defined bimodality, implying two distinct populations sharing a similar 3D volume. The first population comprises young stars’ clusters around the ρ Ophiuchi star and the main Ophiuchus clouds (L1688, L1689, L1709). In contrast, the second population is slightly older (∼10 Myr), more dispersed, has a distinct proper motion, and is possibly from the Upper Sco group. The two populations are moving away from each other at about 4.1 km s−1 and will no longer overlap in about 4 Myr. Finally, we flag 17 sources in the literature sample as likely impostors, which are sources that exhibit large deviations from the average properties of the ρ Oph population. Our results show the importance of accurate 3D space and motion information for improved stellar population analysis.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3