Constraints on the nearby exoplanet ϵ Indi Ab from deep near- and mid-infrared imaging limits

Author:

Viswanath GayathriORCID,Janson MarkusORCID,Dahlqvist Carl-HenrikORCID,Petit dit de la Roche Dominique,Samland MatthiasORCID,Girard JulienORCID,Pathak Prashant,Kasper Markus,Feng FaboORCID,Meyer Michael,Boehle AnnaORCID,Quanz Sascha P.ORCID,Jones Hugh R. A.ORCID,Absil OlivierORCID,Brandner WolfgangORCID,Maire Anne-Lise,Siebenmorgen RalfORCID,Sterzik MichaelORCID,Pantin Eric

Abstract

The past decade has seen increasing efforts in detecting and characterising exoplanets using high-contrast imaging in the near- and mid-infrared, which is the optimal wavelength domain for studying old, cold planets. In this work, we present deep adaptive optics imaging observations of the nearby Sun-like star ϵ Ind A with the NaCo (L′) and NEAR (10–12.5 microns) instruments at VLT in an attempt to directly detect its planetary companion, whose presence has been indicated from radial velocity (RV) and astrometric trends. We derive brightness limits from the non-detection of the companion with both instruments and interpret the corresponding sensitivity in mass based on both cloudy and cloud-free atmospheric and evolutionary models. For an assumed age of 5 Gyr for the system, we get detectable mass limits as low as 4.4 MJ in NaCo L′ and 8.2 MJ in NEAR bands at 1.5′′ from the central star. If the age assumed is 1 Gyr, we reach even lower mass limits of 1.7 MJ in NaCo L′ and 3.5 MJ in NEAR bands at the same separation. However, based on the dynamical mass estimate (3.25 MJ) and ephemerides from astrometry and RV, we find that the non-detection of the planet in these observations puts a constraint of 2 Gyr on the lower age limit of the system. NaCo offers the highest sensitivity to the planetary companion in these observations, but the combination with the NEAR wavelength range adds a considerable degree of robustness against uncertainties in the atmospheric models. This underlines the benefits of including a broad set of wavelengths for the detection and characterisation of exoplanets in direct imaging studies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating the GeoSnap 13‐μ$$ \mu $$m cutoff HgCdTe detector for mid‐IR ground‐based astronomy;Astronomische Nachrichten;2023-07-13

2. Stellar and substellar companions from Gaia EDR3;Astronomy & Astrophysics;2021-12-20

3. Exoplanets with ELT-METIS;Astronomy & Astrophysics;2021-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3