The polarisation of the drifting sub-pulses from PSR B1919+21

Author:

Primak N.,Tiburzi C.,van Straten W.,Dyks J.,Gulyaev S.

Abstract

Aims. We aim to expand our understanding of radio wave emission and propagation in the pulsar magnetosphere by studying the polarisation of drifting sub-pulses in highly sensitive observations of PSR B1919+21 recorded at the Arecibo Observatory. Methods. We apply and compare several methods of analysis and visualisation, including eigenvalue analysis of the longitude-resolved covariances between the Stokes parameters; longitude-resolved scatter plots of the normalised Stokes vectors in the Poincaré sphere; auto- and cross-correlations between the Stokes parameters as a function of offset in pulse longitude and lag in pulse number; and mean drift bands of polarisation state, formed by averaging the Stokes parameters and quantities derived from them synchronously with the drifting sub-pulse modulation period. Results. We observe regions of pulse longitude where the superposition of orthogonally polarised modes is best described as incoherent and regions where the superposition appears to be at least partially coherent. Within the region of coherent superposition, over a range of pulse longitudes spanning ∼2°, the distribution of the Stokes polarisation vectors forms a torus centered near the origin of the Poincaré sphere. Furthermore, the polarisation vectors rotate about the axis of revolution of the torus synchronously with the drifting sub-pulse modulation of the total intensity. Conclusions. The nearly uniform circular modulation of polarisation state, clearly evident in both the toroidal distribution of the Stokes polarisation vectors and the mean drift bands of the Stokes parameters, is not predicted by current theoretical models of pulsar emission. We propose different scenarios to explain the generation of the torus, based on either incoherent or phase-coherent superposition of orthogonally polarised modes.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3