Stellar structures, molecular gas, and star formation across the PHANGS sample of nearby galaxies

Author:

Querejeta M.ORCID,Schinnerer E.,Meidt S.,Sun J.,Leroy A. K.,Emsellem E.,Klessen R. S.,Muñoz-Mateos J. C.,Salo H.,Laurikainen E.,Bešlić I.,Blanc G. A.,Chevance M.,Dale D. A.,Eibensteiner C.,Faesi C.,García-Rodríguez A.,Glover S. C. O.,Grasha K.,Henshaw J.,Herrera C.,Hughes A.,Kreckel K.,Kruijssen J. M. D.,Liu D.,Murphy E. J.,Pan H.-A.,Pety J.,Razza A.,Rosolowsky E.,Saito T.,Schruba A.,Usero A.,Watkins E. J.,Williams T. G.

Abstract

We identify stellar structures in the PHANGS sample of 74 nearby galaxies and construct morphological masks of sub-galactic environments based on Spitzer 3.6 μm images. At the simplest level, we distinguish five environments: centres, bars, spiral arms, interarm regions, and discs without strong spirals. Slightly more sophisticated masks include rings and lenses, which are publicly released but not explicitly used in this paper. We examine trends with environment in the molecular gas content, star formation rate, and depletion time using PHANGS–ALMA CO(2–1) intensity maps and tracers of star formation. The interarm regions and discs without strong spirals clearly dominate in area, whereas molecular gas and star formation are quite evenly distributed among the five basic environments. We reproduce the molecular Kennicutt–Schmidt relation with a slope compatible with unity within the uncertainties and without significant slope differences among environments. In contrast to what has been suggested by early studies, we find that bars are not always deserts devoid of gas and star formation, but instead they show large diversity. Similarly, spiral arms do not account for most of the gas and star formation in disc galaxies, and they do not have shorter depletion times than the interarm regions. Spiral arms accumulate gas and star formation, without systematically boosting the star formation efficiency. Centres harbour remarkably high surface densities and on average shorter depletion times than other environments. Centres of barred galaxies show higher surface densities and wider distributions compared to the outer disc; yet, depletion times are similar to unbarred galaxies, suggesting highly intermittent periods of star formation when bars episodically drive gas inflow, without enhancing the central star formation efficiency permanently. In conclusion, we provide quantitative evidence that stellar structures in galaxies strongly affect the organisation of molecular gas and star formation, but their impact on star formation efficiency is more subtle.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3