The ionization fraction in OMC-2 and OMC-3

Author:

Salas P.ORCID,Rugel M. R.,Emig K. L.ORCID,Kauffmann J.,Menten K. M.,Wyrowski F.,Tielens A. G. G. M.

Abstract

Context. The electron density (ne) plays an important role in setting the chemistry and physics of the interstellar medium. However, measurements of ne in neutral clouds have been directly obtained only toward a few lines of sight or they rely on indirect determinations. Aims. We use carbon radio recombination lines and the far-infrared lines of C+ to directly measure ne and the gas temperature in the envelope of the integral shaped filament (ISF) in the Orion A molecular cloud. Methods. We observed the C102α (6109.901 MHz) and C109α (5011.420 MHz) carbon radio recombination lines (CRRLs) using the Effelsberg 100 m telescope at ≈2′ resolution toward five positions in OMC-2 and OMC-3. Since the CRRLs have similar line properties, we averaged them to increase the signal-to-noise ratio of the spectra. We compared the intensities of the averaged CRRLs, and the 158 μm-[CII] and [13CII] lines to the predictions of a homogeneous model for the C+/C interface in the envelope of a molecular cloud and from this comparison we determined the electron density, temperature and C+ column density of the gas. Results. We detect the CRRLs toward four positions, where their velocity (vLSR ≈ 11 km s−1) and widths (σv ≈ 1 km s−1) confirms that they trace the envelope of the ISF. Toward two positions we detect the CRRLs, and the 158 μm-[CII] and [13CII] lines with a signal-to-noise ratio ≥5, and we find ne = 0.65 ± 0.12 cm−3 and 0.95 ± 0.02 cm−3, which corresponds to a gas density nH ≈ 5 × 103 cm−3 and a thermal pressure of pth ≈ 4 × 105 K cm−3. We also constrained the ionization fraction in the denser portions of the molecular cloud using the HCN(1–0) and C2H(1–0) lines to x(e) ≤ 3 × 10−6. Conclusions. The derived electron densities and ionization fraction imply that x(e) drops by a factor ≥100 between the C+ layer and the regions probed by HCN(1–0). This suggests that electron collisional excitation does not play a significant role in setting the excitation of HCN(1–0) toward the region studied, as it is responsible for only ≈10% of the observed emission.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3