MOND-like behavior in the Dirac–Milne universe

Author:

Chardin Gabriel,Dubois Yohan,Manfredi Giovanni,Miller Bruce,Stahl Clément

Abstract

Aims. Observational data show that the observed luminous matter is not sufficient to explain several features of the present universe, from gravitational structure formation to the rotational velocities in galaxies and clusters. The mainstream explanation is that the missing mass, although gravitationally active, interacts very weakly with ordinary matter. Competing explanations involve changing the laws of gravity at low accelerations, as in MOdified Newtonian Dynamics (MOND). Here, we suggest that the Dirac-Milne cosmology, a matter-antimatter symmetric cosmology where the two components repel each other, is capable of accounting for such an apparent modification of the Newtonian law, without invoking dark matter. Methods. Using a simple analytical approximation and 1D and 3D simulations, we study rotation curves and virial velocities and compare the mass observed in the simulations to the mass derived assuming Newtonian gravity. Using a modified version of the RAMSES code, we study the Faber-Jackson scaling relation and the intensity of the additional gravitational field created by antimatter clouds. Results. We show that, in the Dirac-Milne universe, rotation curves are generically flat beyond a characteristic distance of ≈2.5 virial radii, and that the Tully-Fisher and Faber-Jackson scaling relations with an exponent ≈3 are satisfied. We show that the mass derived from the rotation curves assuming Newtonian gravity is systematically overestimated compared to the mass really present. In addition, the Dirac-Milne universe, featuring a polarization between its matter and antimatter components, presents a behavior similar to that of MOND, characterized by an additional surface gravity compared to the Newtonian case. We show that in the Dirac-Milne universe, at the present epoch, the intensity of the additional gravitational field gam due to the presence of clouds of antimatter is on the order of a few 10−11 m s−2, similar to the characteristic acceleration of MOND. We study the evolution of this additional acceleration gam and show that it depends on the redshift, and it is therefore not a fundamental constant. Conclusions. Combined with its known concordance properties on the SNIa luminosity distance, age, nucleosynthesis, and structure formation, the Dirac-Milne cosmology may then represent an interesting alternative to the standard cosmological model ΛCDM, MOND, and other scenarios for explaining the dark matter (or missing gravity) and dark energy conundrum.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3