Detection of interstellar H2CCCHC3N

Author:

Shingledecker C. N.,Lee K. L. K.,Wandishin J. T.,Balucani N.,Burkhardt A. M.,Charnley S. B.,Loomis R.,Schreffler M.,Siebert M.,McCarthy M. C.,McGuire B. A.

Abstract

Context. The chemical pathways linking the small organic molecules commonly observed in molecular clouds to the large, complex, polycyclic species long suspected of being carriers of the ubiquitous unidentified infrared emission bands remain unclear. Aims. To investigate whether the formation of mono- and polycyclic molecules observed in cold cores could form via the bottom-up reaction of ubiquitous carbon-chain species with, for example, atomic hydrogen, a search is made for possible intermediates in data taken as part of the GOTHAM (GBT Observations of TMC-1: Hunting for Aromatic Molecules) project. Methods. Markov chain Monte Carlo (MCMC) source models were run to obtain column densities and excitation temperatures. Astrochemical models were run to examine possible formation routes, including (a) a novel grain-surface pathway involving the hydrogenation of C6N and HC6N, (b) purely gas-phase reactions between C3N and both propyne (CH3CCH) and allene (CH2CCH2), and (c) via the reaction CN + H2CCCHCCH. Results. We report the first detection of cyanoacetyleneallene (H2CCCHC3N) in space toward the TMC-1 cold cloud using the Robert C. Byrd 100 m Green Bank Telescope. Cyanoacetyleneallene may represent an intermediate between less-saturated carbon chains, such as the cyanopolyynes, that are characteristic of cold cores and the more recently discovered cyclic species, such as cyanocyclopentadiene. Results from our models show that the gas-phase allene-based formation route in particular produces abundances of H2CCCHC3N that match the column density of 2 × 1011 cm−2 obtained from the MCMC source model, and that the grain-surface route yields large abundances on ices that could potentially be important as precursors for cyclic molecules.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3