Wapiti: A data-driven approach to correct for systematics in RV data

Author:

Ould-Elhkim M.ORCID,Moutou C.,Donati J.-F.,Artigau É.ORCID,Fouqué P.ORCID,Cook N.J.ORCID,Carmona A.ORCID,Cristofari P. I.,Martioli E.ORCID,Debras F.ORCID,Dumusque X.ORCID,Martins J. H. C.,Hébrard G.,Cadieux C.,Delfosse X.,Doyon R.,Klein B.ORCID,Gomes da Silva J.,Forveille T.,Hood T.ORCID,Charpentier P.ORCID

Abstract

Context. Recent advances in the development of precise radial velocity (RV) instruments in the near-infrared (near-IR) domain, such as SPIRou, have facilitated the study of M-type stars to more effectively characterize planetary systems. However, the near-IR presents unique challenges in exoplanet detection due to various sources of planet-independent signals which can result in systematic errors in the RV data. Aims. In order to address the challenges posed by the detection of exoplanetary systems around M-type stars using near-IR observations, we introduced a new data-driven approach for correcting systematic errors in RV data. The effectiveness of this method is demonstrated through its application to the star GJ 251. Methods. Our proposed method, Weighted principAl comPonent reconsTructIon (referred to as Wapiti), used a dataset of per-line RV time series generated by the line-by-line (LBL) algorithm and employed a weighted Principal Component Analysis (wPCA) to reconstruct the original RV time series. A multistep process was employed to determine the appropriate number of components, with the ultimate goal of subtracting the wPCA reconstruction of the per-line RV time series from the original data in order to correct systematic errors. Results. The application of Wapiti to GJ 251 successfully eliminated spurious signals from the RV time series and enabled the first detection in the near-IR of GJ 251b, a known temperate super-Earth with an orbital period of 14.2 days. This demonstrates that, even when systematics in SPIRou data are unidentified, it is still possible to effectively address them and fully realize the instrument’s capability for exoplanet detection. Additionally, in contrast to the use of optical RVs, this detection did not require us to filter stellar activity, highlighting a key advantage of near-IR RV measurements.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3