Statistically bias-minimized peculiar velocity catalogs from Gibbs point processes and Bayesian inference

Author:

Sorce Jenny G.ORCID,Stoica Radu S.ORCID,Tempel ElmoORCID

Abstract

The peculiar velocities of galaxies can serve as excellent cosmological probes provided that the biases inherent to their measurements are contained prior to the start of any study. This paper proposes a new algorithm based on an object point process model whose probability density is built to statistically reduce the effects of Malmquist biases and uncertainties due to lognormal errors in radial peculiar velocity catalogs. More precisely, a simulated annealing algorithm allows for the probability density describing the point process model to be maximized. The resulting configurations are bias-minimized catalogs. We conducted tests on synthetic catalogs mimicking the second and third distance modulus catalogs of the Cosmicflows project from which peculiar velocity catalogs are derived. By reducing the local peculiar velocity variance in catalogs by an order of magnitude, the algorithm permits the recovery of the expected one, while preserving the small-scale velocity correlation. It also allows for the expected clustering to be retrieved. The algorithm was then applied to the observational catalogs. The large-scale structure reconstructed with the Wiener-filter technique applied to the bias-minimized observational catalogs matches that of the local cosmic web well, as supported by redshift surveys of local galaxies. These new bias-minimized versions of peculiar velocity catalogs can be used as a starting point for several studies, from plausible estimations of the most probable value for the Hubble constant, H0, to the production of simulations constrained to reproduce the local Universe.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3