The effects of general relativity on close-in radial-velocity-detected exosystems

Author:

Volpi MaraORCID,Libert Anne-SophieORCID

Abstract

Aims. The detection of the first exoplanet around a solar-type star revealed the existence of close-in planets. Several of these close-in planets are part of multi-planet systems. For systems detected via the radial velocity (RV) method, we lack information on the mutual inclination of the orbital planes. The aim of this work is to study the long-term stability of RV-detected two-planet systems with close-in planets and identify possible three-dimensional configurations for these systems that are compatible with observations. To do so, we focused on the protective mechanism of the Lidov-Kozai (LK) secular resonance and studied the effects of general relativity (GR) on long-term evolution. Methods. By means of an analytical study based on a high-order secular Hamiltonian expansion in the eccentricities and inclinations, we first identified ranges of values for the orbital and mutual inclinations that are compatible with the presence of the LK resonance in the purely gravitational case. Then, adding the secular contribution of the relativistic corrections exerted by the central star on the inner planet, namely the advance of its pericenter precession, we analysed the outcomes of the two sets of simulations. We compared our results to analytical estimates to determine the importance of GR effects. Results. We find that for the majority of the systems considered, GR strongly affects the dynamics of the system and, most of the time, voids the LK resonance, as observed for GJ 649, GJ 832, HD 187123, HD 190360, HD 217107, and HD 47186. The long-term stability of these systems is then possible whatever the mutual inclination of the orbits. On the contrary, for GJ 682, HD 11964, HD 147018, and HD 9446, the LK resonant region in the parameter space of the orbital and mutual inclinations is left (almost) unchanged when GR effects are considered, and consequently their long-term stability is only possible if the mutual inclination of the orbits is low or if the systems are in the LK regime with a high mutual inclination.

Funder

Fonds De La Recherche Scientifique - FNRS

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3