Rotational radial shear in the low solar photosphere

Author:

Faurobert M.ORCID,Corbard T.,Gelly B.,Douet R.,Laforgue D.

Abstract

Context. Radial differential rotation is an important physical ingredient in stellar dynamo theory. In the case of the Sun, heliosismology techniques have revealed the existence of a near-surface shear layer covering 15–20% of the upper convection zone. It was recently shown that the rotation velocity gradient is not uniform in this layer and that it displays a steep increase in a shallow layer near the surface. Aims. We report the detection of a rotation velocity depth-gradient in the low photosphere that is not accessible to heliosismology techniques. Methods. We applied differential interferometric methods to spectroscopic data obtained with the solar telescope THEMIS, which is equipped with an efficient adaptative optics system. The detection was based on the measurement of a systematic east-west shift between images of the solar granulation at different depths in the FeI 630.15 nm at the center of the solar disk. The same technique was applied to obtain the depth-difference between the images from their perspective shift when they are observed away from the disk center. Both THEMIS and HINODE/SOT data were used for the height-difference measurement, giving similar results. Results. At the center of the solar disk, we measured a systematic retrograde shift of the photospheric granular structures on the east-west axis and with no shift in the north-south direction. The retrograde shift increases linearly with height. We interpret these findings as a signature of a steep decrease in the angular velocity in the low photosphere. Conclusions. The rotational radial shear in the low solar photosphere is likely related to the dynamics of the subsurface shear layer. Its measurement yields a valuable constraint on the numerical simulations of the solar upper convection zone.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference17 articles.

1. Poynting-Robertson-like Drag at the Sun’s Surface

2. A cross-correlation method for measuring line formation heights in the solar photosphere

3. Magnetic Coupling of the Active Chromosphere to the Solar Interior

4. Gelly B., Langlois M., Moretto G., et al. 2016, in Ground-based and Airborne Telescopes VI, eds. Hall H. J., Gilmozzi R., & Marshall H. K., SPIE Conf. Ser., 9906, 99065A

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3