Planetary system architectures with low-mass inner planets

Author:

Desgrange C.,Milli J.,Chauvin G.,Henning Th.,Luashvili A.,Read M.,Wyatt M.,Kennedy G.,Burn R.,Schlecker M.,Kiefer F.,D’Orazi V.,Messina S.,Rubini P.,Lagrange A.-M.,Babusiaux C.,Matrà L.,Bitsch B.,Bonavita M.,Delorme P.,Matthews E.,Palma-Bifani P.,Vigan A.

Abstract

Context. The discovery of planets orbiting at less than 1 au from their host star and less massive than Saturn in various exoplanetary systems revolutionized our theories of planetary formation. The fundamental question is whether these close-in low-mass planets could have formed in the inner disk interior to 1 au, or whether they formed further out in the planet-forming disk and migrated inward. Exploring the role of additional giant planet(s) in these systems may help us to pinpoint their global formation and evolution. Aims. We searched for additional substellar companions by using direct imaging in systems known to host close-in small planets. The use of direct imaging complemented by radial velocity and astrometric detection limits enabled us to explore the giant planet and brown dwarf demographics around these hosts to investigate the potential connection between both populations. Methods. We carried out a direct imaging survey with SPHERE at VLT to look for outer giant planets and brown dwarf companions in 27 systems hosting close-in low-mass planets discovered by radial velocity. Our sample is composed of very nearby (<20 pc) planetary systems, orbiting G-, K-, and M-type mature (0.5–10 Gyr) stellar hosts. We performed homogeneous direct imaging data reduction and analysis to search for and characterize point sources, and derived robust statistical detection limits. The final direct imaging detection performances were globally considered together with radial velocity and astrometric sensitivity. Results. Of 337 point-source detections, we do not find any new bound companions. We recovered the emblematic very cool T-type brown dwarf GJ 229 B. Our typical sensitivities in direct imaging range from 5 to 30 MJup beyond 2 au. The non-detection of massive companions is consistent with predictions based on models of planet formation by core accretion. Our pilot study opens the way to a multi-technique approach for the exploration of very nearby exoplanetary systems with future ground-based and space observatories.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3