Innovative and automated method for vortex identification. II. Application to numerical simulations of the solar atmosphere

Author:

Canivete Cuissa J.R.,Steiner O.

Abstract

Ubiquitous small-scale vortical motions are seen to occur in the solar atmosphere both in simulations and observations. They are thought to play a significant role in the local heating of the quiet chromosphere and corona. In a previous paper, we proposed a new method for the automated identification of vortices based on the accurate estimation of curvature centers; this method was implemented in the SWIRL algorithm. We aim to assess the applicability of the SWIRL algorithm to self-consistent numerical simulations of the solar atmosphere. The highly turbulent and dynamical solar flow poses a challenge to any vortex-detection method. We also conduct a statistical analysis of the properties and characteristics of photospheric and chromospheric small-scale swirling motions in numerical simulations. h $ of physical time. Mm Mm km $ throughout the simulated atmosphere. We also find an approximately linear correlation between the rotational speed of chromospheric swirls and the local Alfvén speed. We find evidence that more than $80\,<!PCT!>$ of the identified, coherent, vortical structures may be Alfvénic in nature. The SWIRL algorithm is a reliable tool for the identification of vortical motions in magnetized, turbulent, and complex astrophysical flows. It can serve to expand our understanding of the nature and properties of swirls in the solar atmosphere. A statistical analysis shows that swirling structures may be smaller, more numerous, and may rotate faster than previously thought, and also suggests a tight relation between swirls and the propagation of Alfvénic waves in the solar atmosphere.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3