Characterizing the line emission from molecular clouds

Author:

Tafalla M.ORCID,Usero A.ORCID,Hacar A.

Abstract

Aims. We aim to characterize and compare the molecular-line emission of three clouds whose star-formation rates span one order of magnitude: California, Perseus, and Orion A. Methods. We used stratified random sampling to select positions representing the different column density regimes of each cloud and observed them with the IRAM 30 m telescope. We covered the 3 mm wavelength band and focused our analysis on CO, HCN, CS, HCO+, HNC, and N2H+. Results. We find that the line intensities depend most strongly on the H2 column density, with which they are tightly correlated. A secondary effect, especially visible in Orion A, is a dependence of the line intensities on the gas temperature. We explored a method that corrects for temperature variations and show that, when it is applied, the emission from the three clouds behaves very similarly. CO intensities vary weakly with column density, while the intensity of traditional dense-gas tracers such as HCN, CS, and HCO+ varies almost linearly with column density. N2H+ differs from all other species in that it traces only cold dense gas. The intensity of the rare HCN and CS isotopologs reveals additional temperature-dependent abundance variations. Overall, the clouds have similar chemical compositions that, as the depth increases, are sequentially dominated by photodissociation, gas-phase reactions, molecular freeze-out, and stellar feedback in the densest parts of Orion A. Our observations also allowed us to calculate line luminosities for each cloud, and a comparison with literature values shows good agreement. We used our HCN(1–0) data to explore the behavior of the HCN conversion factor, finding that it is dominated by the emission from the outermost cloud layers. It also depends strongly on the gas kinetic temperature. Finally, we show that the HCN/CO ratio provides a gas volume density estimate, and that its correlation with the column density resembles that found in extragalactic observations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3