Impacts of high-contrast image processing on atmospheric retrievals

Author:

Nasedkin E.ORCID,Mollière P.,Wang J.ORCID,Cantalloube F.,Kreidberg L.,Pueyo L.,Stolker T.ORCID,Vigan A.ORCID

Abstract

Many post-processing algorithms have been developed in order to better separate the signal of a companion from the bright light of the host star, but the effect of such algorithms on the shape of exoplanet spectra extracted from integral field spectrograph data is poorly understood. The resulting spectra are affected by noise that is correlated in wavelength space due to both optical and data processing effects. Within the framework of Bayesian atmospheric retrievals, we aim to understand how these correlations and other systematic effects impact the inferred physical parameters. We consider three algorithms (KLIP, PynPoint, and ANDROMEDA), optimising the choice of algorithmic parameters using a series of injection tests on archival SPHERE and GPI data of the HR 8799 system. The wavelength-dependent covariance matrix was calculated to provide a measure of instrumental and algorithmic systematics. We perform atmospheric retrievals using petit RADTRANS on optimally extracted spectra to measure how these data processing systematics influence the retrieved parameter distributions. The choice of data processing algorithm and parameters significantly impact the accuracy of retrieval results, with the mean posterior parameter bias ranging from 1 to 3 σ from the true input parameters. Including the full covariance matrix in the likelihood improves the accuracy of the inferred parameters, and cannot be accounted for using ad hoc scaling parameters in the retrieval framework. Using the Bayesian information criterion and other statistical measures as heuristic goodness-of-fit metrics, the retrievals including the full covariance matrix are favoured when compared to using only the diagonal elements.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3