SHOTGLAS

Author:

Latour M.ORCID,Hämmerich S.ORCID,Dorsch M.ORCID,Heber U.,Husser T.-O.,Kamman S.,Dreizler S.,Brinchmann J.ORCID

Abstract

Aims. We want to study the population of blue horizontal branch (HB) stars in the centres of globular clusters (GC) for the first time by exploiting the unique combination of MUSE spectroscopy and HST photometry. In this work, we characterize their properties in the GCs ω Cen and NGC 6752. Methods. We use dedicated model atmospheres and grids of synthetic spectra computed using a hybrid LTE/NLTE modeling approach to fit the MUSE spectra of HB stars hotter than 8000 K in both clusters. The spectral fits provide estimates of the effective temperature (Teff), surface gravity (log ɡ), and helium abundance of the stars. The model grids are further used to fit the HST magnitudes of the stars, that is, their spectral energy distributions (SEDs). From the SED fits, we derive the average reddening, radius, luminosity, and mass of the stars in our sample. Results. The atmospheric and stellar properties that we derive for the stars in our sample are in good agreement with theoretical expectations. In particular, the stars cooler than ~15 000 K closely follow the theoretical predictions on radius, log ɡ, and luminosity for helium-normal (Y = 0.25) models. In ω Cen, we show that the majority of these cooler HB stars cannot originate from a helium-enriched population with Y > 0.35. The properties of the hotter stars (radii and luminosities) are still in reasonable agreement with theoretical expectations, but the individual measurements show a large scatter. For these hot stars, we find a mismatch between the effective temperatures indicated from the MUSE spectral fits and the photometric fits, with the latter returning Teff lower by ~3000 K. We use three different diagnostics, namely the position of the G-jump and changes in metallicity and helium abundances, to place the onset of diffusion in the stellar atmospheres at Teff between 11 000 and 11 500 K. Our sample includes two stars known as photometric variables; we confirm one to be a bona fide extreme HB object but the other is a blue straggler star. Finally, unlike what has been reported in the literature, we do not find significant differences between the properties (e.g., log ɡ, radius, and luminosity) of the stars in the two clusters. Conclusions. We show that our analysis method – combining MUSE spectra and HST photometry of HB stars in GCs – is a powerful tool for characterising their stellar properties. With the availability of MUSE and HST observations of additional GCs, we have a unique opportunity to combine homogeneous spectroscopic and photometric data to study and compare the properties of blue HB stars in different GCs.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3