Polycyclic aromatic hydrocarbons in exoplanet atmospheres

Author:

Dubey DwaipayanORCID,Grübel Fabian,Arenales-Lope Rosa,Molaverdikhani Karan,Ercolano Barbara,Rab Christian,Trapp Oliver

Abstract

Context. Polycyclic aromatic hydrocarbons, largely known as PAHs, are widespread in the Universe and have been identified in a vast array of astronomical observations, from the interstellar medium to protoplanetary disks. They are likely to be associated with the chemical history of the Universe and the emergence of life on Earth. However, their abundance on exoplanets remains unknown. Aims. We aim to investigate the feasibility of PAH formation in the thermalized atmospheres of irradiated and non-irradiated hot Jupiters around Sun-like stars. Methods. To this aim, we introduced PAHs in the 1D, self-consistent forward modeling code petitCODE. We simulated a large number of planet atmospheres with different parameters (e.g., carbon to oxygen ratio, metallicity, and effective planetary temperature) to study PAH formation. By coupling the thermochemical equilibrium solution from petitCODE with the 1D radiative transfer code, petitRADTRANS, we calculated the synthetic transmission and emission spectra for irradiated and non-irradiated planets, respectively, and explored the role of PAHs in planet spectra. Results. Our models show strong correlations between PAH abundance and the aforementioned parameters. In thermochemical equilibrium scenarios, an optimal temperature, elevated carbon to oxygen ratio, and increased metallicity values are conducive to the formation of PAHs, with the carbon to oxygen ratio having the largest effect.

Funder

Deutsche Forschungsgemeinschaft

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3