Exploring magnetic field properties at the boundary of solar pores: A comparative study based on SDO-HMI observations

Author:

Campos Rozo J. I.ORCID,Vargas Domínguez S.ORCID,Utz D.ORCID,Veronig A. M.ORCID,Hanslmeier A.

Abstract

Context. The Sun’s magnetic fields play an important role in various solar phenomena. Solar pores are regions of intensified magnetic field strength compared to the surrounding photospheric environment, and their study can help us better understand the properties and behaviour of magnetic fields in the Sun. In this work, we investigate the properties of magnetic fields on the boundaries of solar pores, specifically focusing on the evolution of the vertical magnetic field. Aims. Up to now, there exists only a single study on magnetic field properties at the boundary region of a pore. Therefore, the main goal of this work is to increase the statistics of magnetic properties determining the pore boundary region. To this aim, we study the change of the vertical magnetic field on the boundaries of six solar pores and their time evolution. Methods. We analyse six solar pores using data from the Helioseismic and Magnetic Imager instrument on board the Solar Dynamics Observatory. We apply image processing techniques to extract the relevant features of the solar pores and determine the boundary conditions of the magnetic fields. For each pore, the maximal vertical magnetic field is determined, and the obtained results are compared with the above-mentioned previous study. Results. We find the maximal vertical magnetic field values on the boundaries of the studied solar pores to range from 1400 G to 1600 G, with a standard deviation between 7.8% and 14.8%. These values are lower than those reported in the mentioned preceding study. However, this can be explained by differences in spatial resolution as well as the type of data we used. For all the pores, we find that the magnetic inclination angle lies in a range of 30 ± 7°, which is consistent with the idea that the magnetic field configuration in solar pores is mainly vertical. Conclusions. The vertical magnetic field is an important factor in determining the boundary of solar pores, and it plays a more relevant role than the intensity gradient. The obtained information will be useful for future studies on the formation and evolution of magnetic structures of the Sun. Additionally, this study highlights the importance of high spatial resolution data for the purpose of accurately characterising the magnetic properties of solar pores. Overall, the findings of this work contribute to the understanding of the magnetic field properties of the Sun and will be crucial for improving models of solar dynamics and magnetic flux emergence.

Funder

Austrian Science Fund

Grant Agency of the Czech Republic

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3