The truncation of the disk of NGC 4565

Author:

Martínez-Lombilla CristinaORCID,Infante-Sainz Raúl,Jiménez-Ibarra FelipeORCID,Knapen Johan H.ORCID,Trujillo IgnacioORCID,Comerón SébastienORCID,Borlaff Alejandro S.ORCID,Román JavierORCID

Abstract

Context. The hierarchical model of galaxy formation suggests that galaxies are continuously growing. However, our position inside the Milky Way prevents us from studying the disk edge. Truncations are low surface brightness features located in the disk outskirts of external galaxies. They indicate where the disk brightness abruptly drops, and their location is thought to change dynamically. In previous analyses of Milky Way-like galaxies, truncations were detected up to 3 kpc above the mid-plane, but whether they remain present beyond that height remains unclear. Aims. Our goal is to determine whether truncations can be detected above 3 kpc in height in the Milky Way-like galaxy NGC 4565 and thus establish the actual disk thickness. We also aim to study how the truncation relates to disk properties such as star formation activity or the warp. Methods. We performed a vertical study of the disk of the NGC 4565 edge in unprecedented detail. We explored the truncation radius at different heights above and below the disk mid-plane (0 < z < 8 kpc) and at different wavelengths. We used new ultra-deep optical data (μg,lim = 30.5 mag arcsec−2; 3σ within 10 × 10 arcsec2 boxes) in the g, r, and i broadbands, along with near-ultraviolet, far-ultraviolet, Hα, and H I observations. Results. We detect the truncation up to 4 kpc in the g, r, and i ultra-deep bands, which is 1 kpc higher than in any previous study for any galaxy. The radial position of the truncation remains constant up to 3 kpc, while higher up it is located at a smaller radius. This result is independent of the wavelength but is affected by the presence of the warp. Conclusions. We propose an inside-out growth scenario for the formation of the disk of NGC 4565. Our results point towards the truncation feature being linked to a star-forming threshold and to the onset of the disk warp.

Funder

Australian Research Council

Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions

Spanish Ministry of Science, Innovation and Universities

State Research Agency

European Regional Development Fund

Spanish Government

NASA

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3