Constraints on (2060) Chiron’s size, shape, and surrounding material from the November 2018 and September 2019 stellar occultations

Author:

Braga-Ribas F.ORCID,Pereira C. L.ORCID,Sicardy B.ORCID,Ortiz J. L.ORCID,Desmars J.,Sickafoose A.ORCID,Emilio M.ORCID,Morgado B.ORCID,Margoti G.ORCID,Rommel F. L.ORCID,Camargo J. I. B.ORCID,Assafin M.ORCID,Vieira-Martins R.ORCID,Gomes-Júnior A. R.ORCID,Santos-Sanz P.ORCID,Morales N.ORCID,Kretlow M.ORCID,Lecacheux J.ORCID,Colas F.,Boninsegna R.,Schreurs O.,Dauvergne J. L.ORCID,Fernandez E.,van Heerden H. J.,González H.,Bihel D.,Jankowsky F.

Abstract

Context. After the discovery of rings around the largest known Centaur object, (10199) Chariklo, we carried out observation campaigns of stellar occultations produced by the second-largest known Centaur object, (2060) Chiron, to better characterize its physical properties and presence of material on its surroundings. Aims. We aim to provide constraints on (2060) Chiron’s shape for the first time using stellar occultations. We investigate the detectability of material previously observed in its vicinity using the 2018 occultation data obtained from South Africa Astronomical Observatory (SAAO). Methods. We predicted and successfully observed two stellar occultations by Chiron. These observations were used to constrain its size and shape by fitting elliptical limbs with equivalent surface radii in agreement with radiometric measurements. We also obtained the properties of the material observed in 2011 with the same technique used to derive Chariklo’s ring properties in our previous works, used to obtain limits on the detection of secondary events in our 2018 observation. Results. Constraints on the (2060) Chiron shape are reported for the first time. Assuming an equivalent radius of Requiv = 105−7+6 km, we obtained a semi-major axis of a = 126 ± 22 km. Considering Chiron’s true rotational light curve amplitude and assuming it has a Jacobi equilibrium shape, we were able to derive a 3D shape with a semi-axis of a = 126 ± 22 km, b = 109 ± 19 km, and c = 68 ± 13 km, implying in a volume-equivalent radius of Rvol= 98 ± 17 km. We determined the physical properties of the 2011 secondary events around Chiron, which may then be directly compared with those of Chariklo rings, as the same method was used. Data obtained from SAAO in 2018 do not show unambiguous evidence of the proposed rings, mainly due to the large sampling time. Meanwhile, we discarded the possible presence of a permanent ring similar to (10199) Chariklo’s C1R in optical depth and extension. Conclusions. Using the first multi-chord stellar occultation by (2060) Chiron and considering it to have a Jacobi equilibrium shape, we derived its 3D shape, implying a density of 1119 ± 4 kg m−3. New observations of a stellar occultation by (2060) Chiron are needed to further investigate the material’s properties around Chiron, such as the occultation predicted for September 10, 2023.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3