RXCJ1111.6+4050 galaxy cluster: Observational evidence of a transitional fossil group

Author:

Barrena R.ORCID,Chon G.ORCID,Böhringer H.,Méndez-Abreu J.ORCID,Ferragamo A.ORCID

Abstract

We present a detailed kinematical and dynamical study of the galaxy cluster RXCJ1111.6+4050 (RXCJ1111), at z = 0.0756 using 104 new spectroscopic redshifts of galaxies observed at the Telescopio Nazionale Galileo and SDSS DR16 public archive. Our analysis is performed in a multiwavelength context in order to study and compare mainly optical and X-ray properties using XMM-Newton data. We find that RXCJ1111 is a galaxy cluster showing a velocity distribution with clear deviations from Gaussianity, that we are able to explain by the presence of a substructure within the cluster. The two cluster components show velocity dispersions of 644 ± 56 km s−1 and 410 ± 123 km s−1, which yield dynamical masses of M200 = 1.9 ± 0.4 × 1014M and 0.6 ± 0.4 × 1014M for the main system and substructure, respectively. The 2D spatial distribution of galaxies and X-ray surface brightness of RXCJ1111 presents an elongation in the North–South direction. These observational facts, together with a gradient of 250−350 km s−1 Mpc−1 in the velocity field, following the NNE–SSE direction, suggest that the merger axis between the main system and substructure is slightly tilted with respect to the line-of-sight. The substructure is characterized by a magnitude gap Δm12 ≥ 1.8, so it fits the “fossil-like” definition of a galaxy group. From the X-ray observations, we estimate a M500, X = 1.68 ± 0.25 × 1014M, which is in good agreement with the dynamical masses when two galaxy components are considered separately. This suggests that the mass estimates obtained from X-ray and velocity dispersion are compatible even for non-relaxed clusters, at least when we are able to identify and separate galaxy clumps and derive masses by considering the virialized regions. We propose a 3D merging model and find that the fossil group is in an early phase of collision with the RXCJ1111 main cluster and placed at ∼8° ( ± 3° ) from line-of-sight. This merging model would explain the slight increase found in the TX with respect to what we would expect for relaxed clusters. Due to the presence of several brightest galaxies, after this collision, the substructure would presumably lose its fossil condition. Therefore, RXCJ1111 represents the observational evidence that the fossil stage of a system can be temporary and transitional.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3