Comparative photometric analysis of the Reiner Gamma swirl and Chang’e 5 landing site

Author:

Hess M.ORCID,Wöhler C.,Qiao L.ORCID,Bhatt M.ORCID

Abstract

Context.Lunar swirls are bright albedo features only found on the Moon that are still not entirely understood. It is commonly accepted that reduced space weathering plays a role in explaining the origins of lunar swirls because the local magnetic fields that are typically associated with these albedo anomalies are effective in reducing the solar wind influx. However, additional processes are required to fully explain the spectral, photometric, and polarimetric properties of the swirls.Aims.In this study, we compare the photometric properties of the Chang’e-5 landing site to those of the Reiner Gamma swirl. Because the physical effects of a landing rocket jet on the lunar regolith are relatively well known, these observations can provide important insights into the physical properties of lunar swirls.Methods.We determined the single scattering albedo, opposition effect strength, and surface roughness of the Reiner Gamma swirl and the Chang’e-5 landing site with their respective statistical uncertainties based on the Hapke model and Bayesian inference sampling.Results.The Chang’e-5 landing site and the Reiner Gamma swirl exhibit similar photometric properties, in particular: an increased albedo and a reduced opposition effect strength. Additionally, the landing site is about 20% less rough compared to the surrounding area.Conclusions.These findings suggest that the swirl surface is less porous compared to the surrounding surface, similarly to a landing site where the top layer of the regolith has been blown away effectively so that the compactness was increased. We conclude that external mechanisms that are able to compress the uppermost regolith layer are involved in lunar swirl formation, such as interactions with the gaseous hull of a passing comet.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3