A method to deconvolve stellar profiles

Author:

Escárate P.ORCID,Curé M.,Araya I.,Coronel M.,Cedeño A. L.,Celedon L.,Cavieres J.,Agüero J. C.,Arcos C.,Cidale L. S.,Levenhagen R. S.,Pezoa R.,Simón-Díaz S.

Abstract

Context. Currently, one of the standard procedures used to determine stellar and wind parameters of massive stars involves to comparing the observed spectral lines with a grid of synthetic lines. These synthetic lines are calculated using non-local thermodynamic equilibrium radiative transfer codes. In this standard procedure, after estimating the stellar-projected rotational speed (v sin i), all synthetic models need to be convolved using this value in order to perform the comparison with the observed line and estimate the stellar parameters. Aims. In this work, we propose a methodology to deconvolve the observed line profile to one from a non-rotating star. Thus, to perform a comparison, we will not need to convolve all the synthetic profiles, saving significant time and resources. Methods. The proposed deconvolution method is based on transforming this inverse problem into an optimization of a direct problem. We propose using a Gaussian sum approximation (GSA) to obtain the line profile without the broadening effect due to stellar rotation. After selecting the most adequate model to derive the fundamental GSA parameters, we convolved it with the known v sin i in order to obtain the profile considering the v sin i. Finally, we compared this approximated line profile directly with the observed spectrum. Results. The performance of the proposed method is analyzed using synthetic and observed lines. The results show that the proposed deconvolution method yields accurate non-rotating profiles. Conclusions. The proposed approach utilizing GSA is an accurate method to deconvolve spectral lines.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3