A semi-analytical thermal model for craters with application to the crater-induced YORP effect

Author:

Zhou Wen-Han,Michel Patrick

Abstract

The YORP effect is the thermal torque generated by radiation from the surface of an asteroid. The effect is sensitive to surface topology, including small-scale roughness, boulders, and craters. The aim of this paper is to develop a computationally efficient semi-analytical model for the crater-induced YORP (CYORP) effect that can be used to investigate the functional dependence of this effect. This study linearizes the thermal radiation term as a function of the temperature in the boundary condition of the heat conductivity, and obtains the temperature field in a crater over a rotational period in the form of a Fourier series, accounting for the effects of self-sheltering, self-radiation, and self-scattering. By comparison with a numerical model, we find that this semi-analytical model for the CYORP effect works well for $K>0.1 W/m/K$. This semi-analytical model is computationally three-orders-of-magnitude more efficient than the numerical approach. We obtain the temperature field of a crater, accounting for the thermal inertia, crater shape, and crater location. We then find that the CYORP effect is negligible when the depth-to-diameter ratio is smaller than 0.05. In this case, it is reasonable to assume a convex shape for YORP calculations. Varying the thermal conductivity yields a consistent value of approximately 0.01 for the spin component of the CYORP coefficient, while the obliquity component is inversely related to thermal inertia, declining from 0.004 in basalt to 0.001 in metal. The CYORP spin component peaks at an obliquity of $0^ or $180^ while the obliquity component peaks at an obliquity of around $45^ or $135^ For a z-axis symmetric shape, the CYORP spin component vanishes, while the obliquity component persists. Our model confirms that the total YORP torque is damped by a few tens of percent by uniformly distributed small-scale surface roughness. Furthermore, for the first time, we calculate the change in the YORP torque at each impact on the surface of an asteroid explicitly and compute the resulting stochastic spin evolution more precisely. This study shows that the CYORP effect due to small-scale surface roughness and impact craters is significant during the history of asteroids. The semi-analytical method that we developed, which benefits from fast computation, offers new perspectives for future investigations of the YORP modeling of real asteroids and for the complete rotational and orbital evolution of asteroids accounting for collisions. Future research employing our CYORP model may explore the implications of space-varying roughness distribution, roughness in binary systems, and the development of a comprehensive rotational evolution model for asteroid groups.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Yarkovsky Effect on the Long-term Evolution of Binary Asteroids;The Astrophysical Journal Letters;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3