Author:
Jia X. D.,Hu J. P.,Wang F. Y.
Abstract
The current discrepancy between the Hubble constant, H0, derived from the local distance ladder and from the cosmic microwave background is one of the most crucial issues in cosmology, as it may possibly indicate unknown systematics or new physics. Here, we present a novel non-parametric method to estimate the Hubble constant as a function of redshift. We establish independent estimates of the evolution of Hubble constant by diagonalizing the covariance matrix. From type Ia supernovae, baryon acoustic oscillation data and the observed Hubble parameter data, a decreasing trend in the Hubble constant with a significance of a 5.6σ confidence level is found. At low redshift, its value is dramatically consistent with that measured from the local distance ladder and it drops to the value measured from the cosmic microwave background at high redshift. Our results may relieve the Hubble tension, with a preference for recent solutions, especially with respect to novel physics.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献