Spectral classification of young stars using conditional invertible neural networks

Author:

Kang Da EunORCID,Ksoll Victor F.,Itrich Dominika,Testi Leonardo,Klessen Ralf S.,Hennebelle Patrick,Molinari Sergio

Abstract

Aims. We introduce a new deep-learning tool that estimates stellar parameters (e.g. effective temperature, surface gravity, and extinction) of young low-mass stars by coupling the Phoenix stellar atmosphere model with a conditional invertible neural network (cINN). Our networks allow us to infer the posterior distribution of each stellar parameter from the optical spectrum. Methods. We discuss cINNs trained on three different Phoenix grids: Settl, NextGen, and Dusty. We evaluate the performance of these cINNs on unlearned Phoenix synthetic spectra and on the spectra of 36 class III template stars with well-characterised stellar parameters. Results. We confirm that the cINNs estimate the considered stellar parameters almost perfectly when tested on unlearned Phoenix synthetic spectra. Applying our networks to class III stars, we find good agreement with deviations of 5–10% at most. The cINNs perform slightly better for earlier-type stars than for later-type stars such as late M-type stars, but we conclude that estimates of effective temperature and surface gravity are reliable for all spectral types within the training range of the network. Conclusions. Our networks are time-efficient tools that are applicable to large numbers of observations. Among the three networks, we recommend using the cINN trained on the Settl library (Settl-Net) because it provides the best performance across the widest range of temperature and gravity.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference46 articles.

1. Detection of bars in galaxies using a deep convolutional neural network

2. Moderate-resolution spectral standards from lambda 5600 to lambda 9000

3. Ardizzone L., Kruse J., Rother C., & Köthe U. 2019a, in Analyzing inverse problems with invertible neural networks, in 7th International Conference on Learning Representations

4. Ardizzone L., Lüth C., Kruse J., Rother C., & Köthe U. 2019b, ArXiv e-prints [arXiv:1907.02392]

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3