Dynamics and potential origins of decimeter-sized particles around comet 67P/Churyumov-Gerasimenko

Author:

Pfeifer MariusORCID,Agarwal Jessica,Marschall Raphael,Grieger Björn,Lemos PabloORCID

Abstract

Context. One of the primary goals of the European Space Agency’s Rosetta mission to comet 67P/Churyumov-Gerasimenko was to investigate the mechanisms responsible for cometary activity. Aims. Our aim is to learn more about the ejection process of large refractory material by studying the dynamics of decimeter-sized dust particles in the coma of 67P and estimating their potential source regions. Methods. We algorithmically tracked thousands of individual particles through four OSIRIS/NAC image sequences of 67P’s near-nucleus coma. We then traced concentrated particle groups back to the nucleus surface, and estimated their potential source regions, size distributions, and projected dynamical parameters. Finally, we compared the observed activity to dust coma simulations. Results. We traced back 409 decimeter-sized particles to four suspected source regions. The regions strongly overlap and are mostly confined to the Khonsu-Atum-Anubis area. The activity may be linked to rugged terrain, and the erosion of fine dust and the ejection of large boulders may be mutually exclusive. Power-law indices fitted to the particle size–frequency distributions range from 3.4 ± 0.3 to 3.8 ± 0.4. Gas drag fits to the radial particle accelerations provide an estimate for the local gas production rates (Qg = 3.6 × 10−5 kg s−1 m−2), which is several times higher than our model predictions based on purely insolation-driven water ice sublimation. Our observational results and our modeling results both reveal that our particles were likely ejected with substantial nonzero initial velocities of around 0.5–0.6 m s−1. Conclusions. Our findings strongly suggest that the observed ejection of decimeter-sized particles cannot be explained by water ice sublimation and favorable illumination conditions alone. Instead, the local structures and compositions of the source regions likely play a major role. In line with current ejection models of decimeter-sized particles, we deem an overabundance of CO2 ice and its sublimation to be the most probable driver. In addition, because of the significant initial velocities, we suspect the ejection events to be considerably more energetic than gradual liftoffs.

Funder

European Research Council

Volkswagen Foundation

International Max-Planck Research School for Solar System Science

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3