A UNIONS view of the brightest central galaxies of candidate fossil groups

Author:

Chu A.ORCID,Durret F.ORCID,Ellien A.ORCID,Sarron F.,Adami C.,Márquez I.ORCID,Martinet N.ORCID,de Boer T.ORCID,Chambers K. C.ORCID,Cuillandre J.-C.,Gwyn S.,Magnier E. A.,McConnachie A. W.

Abstract

Context. The formation process of fossil groups (FGs) is still under debate, and, because of their relative rarity, large samples of such objects are still missing. Aims. The aim of the present paper is to increase the sample of known FGs, to analyse the properties of their brightest group galaxies (BGGs), and to compare them with a control sample of non-FG BGGs. Methods. We extracted a sample of 87 FG and 100 non-FG candidates from a large spectroscopic catalogue of haloes and galaxies. For all the objects with data available in UNIONS (initially the Canada France Imaging Survey, CFIS) in the u and r bands, and/or in an extra r-band processed to preserve all low-surface-brightness features (rLSB), we performed a 2D photometric fit of the BGG with GALFIT with one or two Sérsic components. We also analysed how the subtraction of the intracluster light (ICL) contribution modifies the BGG properties. From the SDSS spectra available for the BGGs of 65 FGs and 82 non-FGs, we extracted the properties of their stellar populations with Firefly. To complement our study, and in order to provide a detailed illustration of the possible origin of emission lines in the FG BGGs, involving the presence or absence of an AGN, we investigated the origin of the emission lines in a nearby FG that is dominated by the NGC 4104 galaxy. Results. Morphologically, a single Sérsic profile can fit most objects in the u band, while two Sérsics are needed in the r and rLSB bands, both for FGs and non-FGs. Non-FG BGGs cover a larger range of Sérsic index n. FG BGGs follow the Kormendy relation (mean surface brightness versus effective radius) previously derived for almost 1000 brightest cluster galaxies (BCGs), while the majority of non-FGs BGGs are located below this relation, with fainter mean surface brightnesses. This suggests that FG BGGs have evolved similarly to BCGs, and non-FG BGGs have evolved differently from both FG BGGs and BCGs. All the above properties can be strongly modified by the subtraction of the ICL contribution. Based on spectral fitting, the stellar populations of FG and non-FG BGGs do not differ significantly. Conclusions. FG and non-FG BGGs differ from one another in terms of their morphological properties and Kormendy relation, suggesting they have had different formation histories. However, it is not possible to trace differences in their stellar populations or in their large-scale distributions.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference48 articles.

1. The XXL Survey

2. Candidate fossil groups in the CFHTLS: a probabilistic approach

3. Properties of Fossil Groups of Galaxies

4. Classification parameters for the emission-line spectra of extragalactic objects

5. Bertin E. 2006, in Astronomical Data Analysis Software and Systems XV, eds. Gabriel C., Arviset C., Ponz D., & Enrique S., ASP Conf. Ser., 351, 112

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fossil group origins;Astronomy & Astrophysics;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3