A LOFAR sample of luminous compact sources coincident with nearby dwarf galaxies

Author:

Vohl D.ORCID,Vedantham H. K.ORCID,Hessels J. W. T.ORCID,Bassa C. G.ORCID,Cook D. O.ORCID,Kaplan D. L.ORCID,Shimwell T. W.,Zhang C.

Abstract

The vast majority of extragalactic compact continuum radio sources are associated with star formation or jets from (super)massive black holes and, as such, are more likely to be found in association with starburst galaxies or early-type galaxies. Two new populations of radio sources were recently identified: (a) compact and persistent sources (PRSs) associated with fast radio bursts (FRBs) in dwarf galaxies and (b) compact sources in dwarf galaxies that could belong to the long-sought population of intermediate-mass black holes. Despite the interesting aspects of these newly found sources, the current sample size is small, limiting scrutiny of the underlying population. Here, we present a search for compact radio sources coincident with dwarf galaxies. We search the LOFAR Two-meter Sky Survey (LoTSS), the most sensitive low-frequency (144 MHz central frequency) large-area survey for optically thin synchrotron emission to date. Exploiting the high spatial resolution (6″) and low astrometric uncertainty (∼0.″2) of the LoTSS, we match its compact sources to the compiled sample of dwarf galaxies in the Census of the Local Universe, an Hα survey with the Palomar Observatory 48 inch Samuel Oschin Telescope. We identify 29 over-luminous compact radio sources, evaluate the probability of chance alignment within the sample, investigate the potential nature of these sources, and evaluate their volumetric density and volumetric rate. While optical line-ratio diagnostics on the nebular lines from the host galaxies support a star-formation origin rather than an AGN origin, future high-angular-resolution radio data are necessary to ascertain the origin of the radio sources. We discuss planned strategies to differentiate between candidate FRB hosts and intermediate-mass black holes.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3