Empirical contrast model for high-contrast imaging A VLT/SPHERE case study

Author:

Courtney-Barrer B.ORCID,De Rosa R.ORCID,Kokotanekova R.ORCID,Romero C.ORCID,Jones M.,Milli J.ORCID,Wahhaj Z.ORCID

Abstract

Context. The ability to accurately predict the contrast achieved with high-contrast imagers is important for efficient scheduling and quality control measures in modern observatories. Aims. We aim to consistently predict and measure the raw contrast achieved by SPHERE/IRDIS on a frame-by-frame basis in order to improve the efficiency of SPHERE at the Very Large Telescope (VLT) and maximise scientific yield. Methods. Contrast curves were calculated for over 5 yr of archival data obtained using the most common SPHERE/IRDIS corona-graphic mode in the H2/H3 dual-band filter. These data consist of approximately 80 000 individual frames, which were merged and interpolated with atmospheric data to create a large database of contrast curves with associated features. An empirical power-law model for contrast – motivated by physical considerations – was then trained and finally tested on an out-of-sample test dataset. Results. At an angular separation of 300 mas, the contrast model achieved a mean (out-of-sample) test error of 0.13 magnitude with the 5th and 95th percentiles of the residuals equal to −0.23 and 0.64 magnitude respectively. The models test-set root mean square error (RMSE) between 250 and 600 mas was between 0.31 and 0.40 magnitude, which is equivalent to that of other state-of-the-art contrast models presented in the literature. In general, the model performed best for targets of between 5 and 9 G-band magnitude, with degraded performance for targets outside this range. This model is currently being incorporated into the Paranal SCUBA software for first-level quality control and real-time scheduling support.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3