Three is the magic number: Distance measurement of NGC 3147 using SN 2021hpr and its siblings

Author:

Barna B.,Nagy A. P.,Bora Zs.,Czavalinga D. R.,Könyves-Tóth R.,Szalai T.,Székely P.,Zsíros Sz.,Bánhidi D.,Bíró I. B.,Csányi I.,Kriskovics L.,Pál A.,Szabó Zs. M.,Szakáts R.,Vida K.,Bodola Zs.,Vinkó J.

Abstract

Context. The nearby spiral galaxy NGC 3147 hosted three Type Ia supernovae (SNe Ia) in the past decades that have been the subjects of intense follow-up observations. Simultaneous analysis of their data provides a unique opportunity for testing different methods of light curve fitting and distance estimation. Aims. The detailed optical follow-up of SN 2021hpr allows us to revise the previous distance estimations to NGC 3147 and compare the widely used light curve fitting algorithms to each other. After the combination of the available and newly published data of SN 2021hpr, its physical properties can also be estimated with higher accuracy. Methods. We present and analyse new BV griz and Swift photometry of SN 2021hpr to constrain its general physical properties. Together with its siblings, SNe 1997bq and 2008fv, we cross-compared the individual distance estimates of these three SNe given by the Spectral Adaptive Lightcurve Template (SALT) code, and we also checked their consistency with the results from the Multi-Color Light Curve Shape (MLCS) code. The early spectral series of SN 2021hpr was also fit with the radiative spectral code TARDIS to verify the explosion properties and constrain the chemical distribution of the outer ejecta. Results. After combining the distance estimates for the three SNe, the mean distance to their host galaxy, NGC 3127, is 42.5 ± 1.0 Mpc, which matches with the distance inferred by the most up-to-date light curve fitters, SALT3 and BayeSN. We confirm that SN 2021hpr is a Branch-normal Type Ia SN that ejected ~1.12 ± 0.28 M from its progenitor white dwarf and synthesized ~0.44 ± 0.14 M of radioactive 56Ni.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3