Solar cycle variation in the properties of photospheric magnetic concentrations

Author:

Song Anchuan,Zhang Quanhao,Wang Yuming,Liu Rui,Jiang Jie,Li Xiaolei,Liu Jiajia,Lv Shaoyu,Zheng Ruobing

Abstract

It is widely accepted that eruptive phenomena on the Sun are related to the solar magnetic field, which is closely tied to the observed magnetic concentrations (MCs). Therefore, studying MCs is critical in order to understand the origin and evolution of all forms of solar activity. In this paper, we investigate the statistics of characteristic physical parameters of MCs during a whole solar cycle by analyzing magnetograms from 2010 to 2021 observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). We discover that there are differences between large- and small-scale MCs in diffenent phases of the solar cycle. By analyzing the distributions of the magnetic flux, area, and magnetic energy of MCs, we find that the small-scale MCs obey a power-law distribution, and that the power indices vary very little with the phases of the solar cycle. However, for the large-scale MCs, although they also obey the power-law distribution, the power indices are clearly modulated by the different phases of the solar cycle. We also investigate the relation between the maximum magnetic field strength ($B_ max $) and the area of MCs (S) and find the same property. The relation for the large-scale MCs is modulated by the phases of the solar cycle, while it is still independent of the phases of the solar cycle for the small-scale MCs. Our results suggest that small- and large-scale MCs could be generated by different physical mechanisms.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3