Binary central stars of planetary nebulae in the Large Magellanic Cloud

Author:

Gładkowski M.,Hajduk M.,Smolec R.,Szczerba R.,Soszyński I.

Abstract

Close binary central stars of planetary nebulae (PNe) must have formed through a common envelope evolution during the giant phase experienced by one of the stars. Transfer of the angular momentum from the binary system to the envelope leads to the shortening of the binary separations from the radius of red giant to the radius of the order of few tenths of AU. Thus, close binary central stars of planetary nebulae are laboratories to study the common envelope phase of evolution. The close binary fraction in the Galaxy has been measured in various sky surveys, but the close binary fraction is not yet well constrained for the Magellanic Clouds, and our results may help the study of common envelope evolution in low-metallicity environments. This paper presents a continuation of our study of variability in the Magellanic Cloud planetary nebulae on the basis of data from the OGLE survey. Previously, we had analysed the OGLE data in the Small Magellanic Cloud. Here, the study is extended to the Large Magellanic Cloud (LMC). In this paper we search for close binary central stars with the aim to constrain the binary fraction and period distribution in the LMC. We identified 290 counterparts of PNe in the LMC in the $I$-band images from the OGLE-III and OGLE-IV surveys. However, the light curves of ten objects were not accessible in the OGLE database, and thus we analysed the time series photometry of 280 PNe. In total, 32 variables were found, but 5 of them turned out to be foreground objects. Another 18 objects show irregular or regular variability that is not attributable to the binarity of their central stars. Their status and the nature of their variability will be verified in the follow-up paper. Nine binary central stars of PNe with periods between 0.24 and 23.6\,days were discovered. The obtained fraction for the LMC PNe is <!PCT!>$ without correcting for incompleteness. This number is significantly lower than the 12--21<!PCT!> derived in the analogous search in the Galactic bulge. We discuss this difference, taking into account observational biases. The lower binary fraction suggests a lower efficiency of the common envelope phase in producing close binaries in the LMC compared to the Galaxy.

Funder

National Science Centre

European Research Counsil

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3