TAU: A neural network based telluric correction framework

Author:

Kjærsgaard R. D.ORCID,Bello-Arufe A.,Rathcke A. D.,Buchhave L. A.,Clemmensen L. K. H.

Abstract

Context. Telluric correction is one of the critically important outstanding issues for extreme precision radial velocities and exoplanet atmosphere observations. Thorough removal of small so-called micro tellurics across the entire wavelength range of optical spectro-graphs is necessary in order to reach the extreme radial velocity precision required to detect Earth-analog exoplanets orbiting in the habitable zone of solar-type stars. Likewise, proper treatment of telluric absorption will be important for exoplanetary atmosphere observations with high-resolution spectrographs on future extremely large telescopes (ELTs). Aims. In this work, we introduce the Telluric AUtoencoder (TAU). TAU is an accurate high-speed telluric correction framework built to extract the telluric spectrum with previously unobtained precision in a computationally efficient manner. Methods. TAU is built on a neural network autoencoder trained to extract a highly detailed telluric transmission spectrum from a large set of high-precision observed solar spectra. We accomplished this by reducing the data into a compressed representation, allowing us to unveil the underlying solar spectrum and simultaneously uncover the different modes of variation in the observed spectra relating to the absorption from H2O and O2 in the atmosphere of Earth. Results. We demonstrate the approach on data from the HARPS-N spectrograph and show how the extracted components can be scaled to remove H2O and O2 telluric contamination with improved accuracy and at a significantly lower computational expense than the current state of the art synthetic approach molecfit. We also demonstrate the capabilities of TAU to remove telluric contamination from observations of the ultra-hot Jupiter HAT-P-70b allowing for the retrieval of the atmospheric signal. We publish the extracted components and an open-source code base allowing scholars to apply TAU on their own data.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3